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The s~ationary flow structure in the domain between two bodies~ one of which is in the 
other's wake, was examined in [i, 2]. According to [3], such a configuration of the separa- 
tion domain is classified as a free cavern. Assumption about the nature of pulsation 
phenomena in flows of such type can be made by an analogy between the flow in a free cavern 
and the pulsations in channels which are considered in both axisymmetric [4, 5] and plane 
models [6-9] for a different external flow velocity. Theoretical investigations of pulsa- 
tion phenomena in cavities based on using phase relationships for acoustic waves in the cavity 
and waves being propagated in a shear layer are presented in [5, i0, ii]. In a linear formula- 
tion the problem of pulsation excitation in a rectangular cavity is solved for subsonic flows 
by using the results of computing the shear layer stability [12]. The solution of the problem 
of pulsations in cavity with a supersonic flow velocity is presented in [ii] in a two- 
dimensional formulation by the numerical solution of the Navier-Stokes equations. 

Results of an experimental investigation of pressure fluctuations in an axisymmetric 
free cavern for a stream Mach number of M~ = 2.05 are shown in this paper. Two characteristic 
types of fluctuations (high-frequency and low-frequency) were observed depending on the geo- 
metric parameters of the model. The physical pattern of the high-frequency fluctuation 
phenomena is illustrated by a linear one-dimensional theory, which permits evaluation of the 
value of the natural fluctuation frequencies. 

i. The experimental investigation was performed in a T-333 wind tunnel whose metro- 
logical characteristics are presented in [13]. The model diagram is shown in Fig. i, where 
1 is a steel cone with i0 ~ half-angle fastened in a rhomboidal holder with d = 40 mm diameter 
of the base section, 2 are flat interchangeable obstacles with the relative diameter D/d = 
1.0, 1.28, 2.0 which are arranged coaxially with the cone, and 3 is ~he piezosensor LKh-601 
for the pressure fluctuations that is mounted in the center of the obstacle. The distance 

from the bottom section to the obstacle varied in the range ~ = 2~/d = 0.1-5.0 because of 
displacement of the obstacle. 

The investigation was conducted for the following flow parameters: M = 2.05, Reynolds 
number calculated according to the diameter of the cone base section Re d =~1.71"i06, stream 
stagnation temperature T 0 = 261~ static free-stream pressure p~ = 0.343.102 N/m 2. The 
nonuniformityof the Mach number field is <1% [13]. The Reynolds number along the cone length 
is 4.84"106 which is greater than the critical value at which the transition from a laminar 
into a turbulent boundary layer would occur (Re* ~ 3"106 [14]). This permits considering 
the boundary layer on the cone turbulent near the endface. 

The range of frequencies being measured for the LKh-601 piezosensor with a preamplifier 
is 0.02-20 kHz. The piezosensor was calibrated by a PP-101 piston-phone before and after the 
experiment. The signal from the fluctuation sensor went to the input of a "Tembr-2" magnetic 
tape recorder and was inscribed on magnetic tape. During processing the magnetic tape re- 
corder signal was delivered to a one-third octave RFT-01004 analyzer which was used to per- 
form a spectrum analysis in the 20-1000 Hz frequency range. Analysis of the frequency spec- 
trum in the 1-20 kHz band was performed by a $5-3 heterodyne type analyzer with 200-Hz band- 
width, which operated in combination with a N-II0 recorder. The magnetic tape recorder 
amplitude-frequency characteristic (AFC) was taken into account by inserting appropriate 
corrections into the measured spectrum of the signal being investigated. The accuracy of the 
fluctuation amplitude measurements is estimated at 2 dB and of the frequency is 4%. 

To verify the piezosensor response to vibrations, a recording was made in one of the 
regimes, of the vibration signal from the piezosensor whose membrane is isolated from the 
action of the pressure fluctuation. Comparing the spectral composition of the vibration 
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signal and a signal due to presure fluctuations in the presence of a parasitic vibration 
signal showed that the magnitude of the vibration signal is approximately an order of magni- 
tude less than the useful signal in the whole frequency band under investigation. The 
streamlining process was photographed by a IAB-451 shadowgraph device by using a spark light 
source with ~I0 -6 sec exposure. The Schlieren photographswereobtained by using a diaphragm- 
annular knife system, which permitted visualization of the optical inhomogeneity gradient 
in all directions. 

2. The spectral comosition of pressure fluctuations is represented in Fig. 2 for D = 
1.28 for a different obstacle position: lines 1-3 corresponds to ~ = 0~ 0.72; 1o45. 
The fluctuation level at the frequency f, defined as Lf = 20 log(pf/p00), where pf is the 
amplitude of the pressure fluctuations at the frequency f in the frequency band being 
measured, and P00 = 2"i0-~ N/m2, is plotted along the ordinate axis. In this case the 
Strouhal number was calculated with respect to the diameter of the cone base section and the 
free stream velocity U : Sh d = (fd)/U . A characteristic feature of the pressure fluctuation 

spectrum is the presence of peaks in the discrete components whose magnitude reaches 166 dB, 
which is more than 20 dB above the magnitude of the background fluctuations in the_working 
part of the apparatus. The Schlieren photographs of the flow are represented for D = 1.28 
in Fig. 3 for several values of therelative distance: a-d correspond to ~ = 0.4; 0.4; 0.72; 
i.i. 

Two kinds of fluctuations, differing substantially by the values of the discrete fre- 
quencies, are observed. There are fluctuations with St~ouhal number Sh d ~ 1 in almost all 
the modes investigated (see the dependence Lf(Sh d) for ~ = 0.72; 1.45 in Fig. 2). Acoustic 
radiation from the cavern (see Fig. 3) is seen in the Schlieren photographs of the flow 
process. The absence of visible acoustic radiation in the lower part of the model is 
apparently explained by the destructive action of the pylon sustaining cone on the wave front 
of the acoustic radiation. Clearly seen in Fig. 3d are the wavy shape of the shear layer 
interacting with the edge of the obstacle, and the axial symmetry of the shear layer pertur- 
bation. The shear layer perturbation at a distance of approximately (1/3) ~ from the obstacle 
has an external form that can be treated as a large-scale vortex or a coherent structure. 
The wavelength of the perturbation being propagated in the shear layer corresponds to the 
wavelength A of the coherent structures in the jet, referred to the nozzle diameter d c. The 
values of A observed by different investigators are presented in [15] and are described well 
by the linear dependence A = 0.55dc. The values of A/d measured in the shear layer are 
taken approximately the same in this case. For instance, for ~ = i.I A/d = 0.52 (see Fig. 3). 

Values of the frequency of the discrete tone are shown in Fig~ 4, where th_e dependence 
Sh~ = (f~)/U= on the relative range ~ = 2~/d is presented with i) D = 1.0, 2) D = 1.28, 3) 
data in [7], 4) results in [5]. The data from [5, 7] are taken for M = 2.0. The separa- 
tion of all the frequencies into vibrations modes and the good agreement between the ex- 
perimental values obtained in different papers are seen. Values on the graph are conditionally 
super posed for ~ = _5-0 for the results of [5], as is considered possible since the dependence 
Sho(~) vanishes as ~ increases. The data in [5] are obtained for both plane caverns and 
axzsymmetric channels formed by the rectangular turning of a pointed cone. A plane cavern 
formed on the wall of a wind tunnel was investigated [7]. 
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Fig. 3 

The minimal values of Sh E for caverns are similar in order of magnitude to the natural 
acoustic vibrations frequencies in a half-open tube. For the longitudinal acoustic vibra- 
tions in a tube, one end of which is closed and the other open, Shs = 0.25~ here the sound 
speed in the tube [16] is taken as the characteristic velocity. This comparison between 
the values of the natural vibrations frequencies in a cavity and the acoustic vibrations in 
a tube permits considering that the acoustic waves being propagated in a cavity play an 
important part in a vibrational process of this kind. 

Low-frequency fluctuations are observed for small relative distances ~ and have the 
characteristic values Sh d ~ 0.01 (see the spectrum 1 in Fig. 2, say). The pressure fluctua- 
tion level at the frequencies Sh E = 0.25-0.8 (Shs = s Sh d) here exceeds the background by 
approximately i0 dB, but no discrete components are observed in this spectrum band. The low- 
frequency fluctuations are also characterized by several modes. The Schlieren photographs 
of the flow pattern corresponding to this mode are presented in Figs. 3a and b. Two photo- 
graphs correspond to two realizations of the very same mode. The distinction between them 
is due to the phases of the vibrational process. The flow in Fig. 3a separated from the 
trailing edge, while it is seen in Fig. 3b that the separation point was shifted a distance 
0.1d from the bottom edge to the cone generatrix. Shifting of the separation point S 
from the sharp trailing edge to the cone generatrix indicates that the pressure near the 
cone endface for this mode can be increased to a quantity_ which is greater than the drop 
without separation sustained by the boundary layer. For D = 2.0 and s = 0.5 the flow 
separation point is always on the cone generatrix, which is due to the large size of the 
obstacle. Processing the flow Schlieren photographs showed that the boundary layer separation 
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point for several realizations is at a diff_erent distance from the bottom section Xso The 
mean value of the distance x s is 1.2d for D = 2.0, ~ = 0.5, while the span of the vibrations 
reaches 0.35d. The flow diagram for D = 2.0, ~ = 0.5 is shown in Fig. 5, where 1 is the 
attached bow compression shock, 2 is the compression shock associated with flow separation, 
3 is the shear layer, 4 is the compression shock, 5 is the detached compression shock 
near the disc, and 6 is the separation domain. All the flow elements listed above, with 
the exception of the bow shock, are involved in the fluctuation process; for instance, 
values of x s are superposed in the lower part of Fig. 5 for different realizations of the 
fluctuation process. The interval between realizations is 2-3 sec, while the characteristic 
frequencies of this process is ~70 Hz; therefore, this graph illustrates only the location 
of the separation point x s but not the dependence Xs(t). 

Fluctuations accompanying the displacement of the separation point are due to periodic 
influx of a certain mass of gas into the stagnation domain and efflux out, and are called 
delivery vibrations [17]. Vibrations of the separation domain with a substantial change in 
the shape of the latter are called a nonstationary mode of the second kind in [18]. The 
dimensionless fluctuation frequency for the mode of the second kind, calculated according 
to the stream velocity rather than according to the sound speed as was done in [18], takes 
on the minimal value 0.13 (0.009'0.051 in this paper, the disc diameter D is taken as 
characteristic dimension). The similarity of the low-frequency fluctuations described above 
to those kinds of vibrations mentioned in [17, 18] is based on frequency values that are 
close in order of magnitude and on substantial displacement of the separation point during 
the vibrational process. This similarity can apparently be a basis for assumptions on the 
similitude of these kinds of fluctuations. 

3. The flow by a stream with M~ > 1 around a cavity is considered as the design model 
for high-frequency vibrations. The possibility of the existence of a reverse flow with M0 = 
const is assumed (it can reach the value 0.5, see [7], say). For definite relationships 
between the length ~, the depth h, and the thickness of the boundary layer in the cavity, 
intensive fluctuations occur. Acoustic waves, quite noticeable in the shadow photographs, 
are emitted here into the stream. The boundary layer being separated at the point S shapes 
a shear flow that vibrates near the middle position. Interaction between the vibration 
shear layer and the rear endface of the cavity causes a periodic influx and efflux of a 
certain mass of gas. The efflux of the gas from the cavity results in formation of perturba- 
tions in the boundary layer downstream of the rear endface [8]. Perturbations are propagated 
within the cavity from the rear to the forward endface (Fig. 6), reach it and are reflected, 
hence perturbing the shear layer near the point of separation S. The perturbation generated 
in the shear layer near the point S is washed downstream, reaches the rear endface of the 
cavity and interacts, consequently, a new portion of gas flows into the cavity (or flows 
out of the cavity) Interaction near the point of separation S causes a change in intensity 
of the perturbation that is propagated as a compression shock or a fan or rarefaction waves 
into the external stream. 
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The physical pattern elucidated for the fluctuation in the cavity is in agreement with 
[5, i0, ii] and permits a dispersion equation to be obtained. We assume that the perturba- 
tion being formed for x = ~ during deflection of the shear layer near the rear endface, 
is propagated in the cavity in the form of a plane acoustic wave. We shall consider the 
interaction between acoustic waves in the cavity and the shear layer to be realized only 
near the endfaces. Let us note the analogy of the approach to the description of this pheno- 
menon to the method of investigating the process of generating discrete tones by a supersonic 
underexpanded jet impinging on an obstacle [19]. 

Neglecting viscosity, heat conduction, and entropy changes, the longitudinal acoustic 
vibrations of the gas in the cavity are described by the following system 

a7 a7 a~ o~ Mo~+a7 o~ ~ % ~ + ~ = o ,  7 i -  ~ ~ = o .  (3.1) 

Here p = P'/~P0, v = v'/a0 are dimensionless pressure and velocity perturbations, K is the 
adiabatic index, P0, a0 is the average pressure and the sound speed in the cavity, ~ = x/~, 

= tac/g are the dimensionless coordinate and time, and ~ is the length of the cavity. 
The solution of the system (3.1) is the superposition of waves in the form [20] 

v -- [A=qh($) + Ap%($)] exp (cot), 

= [A=qh(~) + Apqh(~)] exp (o)~), 

where ~ = ~r + iwi; Ap, A v are constant coefficients 

qcl(~)=-:  7- e x P ~ M o _ l  j + exp ~ ; 

" 1 [exp a)~ ~o~ ~ (D ~ 

( 3 . 2 )  

Deviation of the shear layer from its mean position will be described as 

= C~ exp (cot - -  i ~ ) ,  

where ~ = y/~ is the deflection, ~ is the wave number of the perturbations being propagated 
along the shear layer, and C = const. It is assumed that Im{a} = 0. The linear form of 
perturbation growth in the shear layer can be considered as the first term in a series expan- 
sion of the standard exponential growth of the perturbations and since we are interested in 
the relatively small range (aS ~ i), then the mentioned expansion can be used for convenience 
in the calculations. Experimentally, such a growth of the vibrations in an axisymmetric jet 

is obtained in [21]. 

Near the forward wall of the cavern (6 = 0) the acoustic vibration parameters are 
connected by the relationship 

P/FI~=o = Z, ( 3 . 3 )  

where Z is the acoustic impedance of the forward wall, a complex number in the general case. 
Vibrations of the shear layer on the rear endface result in a periodic influx (efflux) of a 
certain mass of gas 

~im~ ---- f (~) = - -  j' fh (Y) U (y) dy. 

The minus sign is due to the selection of the direction ~, for (C - ~o) < O, 6mz > 0 the gas 
flows into the cavity, ~0 is the coordinate of the separating streamline. For small boundary 
vibrations ((~ - r <~ h/R) the mass of gas transferred by longitudinal fluctuations into the 
cavity is determined from the continuity equation and equals 

6mo ~ p o U , , ( 7 - - ~ M o ~ ,  

where h = h/~ for the plane or h = D/4~ for the axisymmetric case. Equating the masses of gas 
6m i and 5m 0 , we obtain the boundary condition on the cavity rear endface 

(3.4) 
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For small perturbations the relation between the angle of shear layer deflection and the 
pressure fluctuations is obtained by linearizing the relationship for an oblique compression 
shock or rarefaction wave and is given by the expression 

< V ML - t ] 

~,, I~=o 
(3.5) 

An analogous relation is obtained in [22], the difference is that the lag time 0 expressing 
the phase shift between the pressure vibrations and the layer near the separation point is 
introduced in (3.5). This lag time is called the "delay time of vortex shedding." 

Therefore, to solve the problem on the combined longitudinal vibrations of the gas in the 
cavity and the shear layer, it is necessary that the solution (3.2) satisfy the boundary 
conditions (3.3)-(3.5). We take the cavity forward wall to be acoustically hard 

71~=o = 0 (Z ~oo ) .  

This latter circumstance assumes the existence of a standing acoustic wave in the cavity. 
After appropriate manipulations, we obtain the dispersion equation 

where 

(Mo-- i )exp(Mo~ t ) + ( M o + l ) e x P ( M - - - ~ ) = - - R e x p [ i ( 0 - - a ) ] , ,  

Poao ~M i " 

(3.6) 

It is here assumed that the shear layer is a tangential discontinuity and ~o = O, which yields 

F(~) = - -  p=a~M=~.  ( 3 . 7 )  

To solve the dispersion equation (3.6) it is necessary to know the dependence of the wave 
number of the perturbations being propagated in the shear layer on the frequency, and the 
value of the phase shift 0. 

Data on the mode of the shear layer vibrations above the cavity mouth are obtained for 
the flow around a cavern in an experimental investigation of the shear layer [6], and it is 
found that the phase shift between the vibrations of the longitudinal velocity and the 
vibrations of the shear layers is --"/2. It is seen from the form of the solution (3~ 
that the pressure vibrations and the velocity in the cavity are cophasal for ~ = 0. We use 
the value 0 =: -~/2 in the subsequent calculations. 

The wave number is often determined in terms of the convective velocity a = w/Uc, whose 
value depends on the shear layer thickness, the flow velocity, the frequency, the method used 
to measure it, etc. [23]. A theoretical determination of the dispersion relation w = w(~) 
is obtained from the solution of the problem of the stability of the tangential discon- 
tinuity [22] or the shear layer (see [12, 14], for instance). The mean value of the convec- 
tive velocity of large-scale structures in the jets equals Uc/U ~ = 0.65 [15]. We also take 
this value corresponding to the convective velocity of the most energetic vortices. 

For M 0 = 0 a system of transcendental equations can be obtained to determine the natural 
vibrations frequencies of the cavity 

(2/R) sh tar.cos mi ~ cos (0 --  a), ( 3 . 8 )  

(2/R) ch mr-sin mi = sin (0 - -  a).  

This system is solved numerically. Values of the natural frequencies are presented in Fig. 4 
for positive w r in the form of solid lines. Different lines correspond to different vibra- 
tions modes, and dependences of the Strouhal number Shs are superposed on the graph for five 
vibrations modes (k = 1-5). The computed values of Shs lie somewhat above the experimental 
points. Let us note that stratification of the value of Shs according to the vibrations modes 
is observed sufficiently clearly for both experimental and computed results. The amplitude 
distribution of the pressure fluctuations in the standing wave is given by (3.2) according to 
the model elucidated above. The amplitude distribution along the cavern bottom, measured 
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experimentally and presented in [7], has the same form characteristic for a standing wave. 

If acoustic wave reflection from the forward endface of the cavity is neglected, i.e., 
it is considered that an acoustic wave being propagated in the negative x direction exists in 
the cavity, the value of the acoustic impedance is 

Z = - - i .  (3 .9)  

This corresponds to the zeroth approximation of the model [5] and the approximating relation- 
ships [ii]. Using (3.9) is conjunction with (3.4) yields the dispersion equation for M0 = 0 

(B/2) exp ( - - o r )  exp [i(O - -  a - -  o i ) ]  = 1. 

The s o l u t i o n  i s  f o u n d  i n  t h e  f o r m  

~r = In (R/2), a ~ ~i = 2 ~ ( k - - l A ) ,  

w h e r e  0 = - ~ / 2  i s  t a k e n  i n t o  a c c o u n t .  The v a l u e  o f  F ( 5 )  i s  t a k e n  f r o m  ( 3 . 7 ) .  T a k i n g  a c c o u n t  
o f  t h e  p a r a m e t e r s  u s e d  t o  make t h e  v a r i a b l e s  d i m e n s i o n l e s s ,  t h e r e  i s  o b t a i n e d  f o r  t h e  
n a t u r a l  f r e q u e n c i e s  

Sht = (k - -  t A ) / ( U ~ / a o  + Uc/U~) ,  ( 3 . 1 0 )  

which corresponds exactly to the zeroth approximation obtained in [5]. Values of Sh~ 
calculated by means of (3.10) are superposed by dashes in Fig. 4 and differ inessentially 
from the values calculated by means of (3.8). 

The author is grateful to V. V. Vedernikova for assistance in performing the experiments 
and carrying out the research. 
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THE ROLE OF THE FIRST AND SECOND MODES IN 

COMPRESSIBLE BOUNDARY-LAYER TRANSITION 

V. I. Lysenko UDC 532.526 

At present there is no complete theory that can predict the transition location in a 
compressible boundary layer. In practice, however, the well-developed approximate methods 
based, as a rule, on linear stability theory are used (see, e.g., [i]). In the absence of 
information on the initial disturbance spectrum in the boundary layer (e.g., in flight 
tests) it is possible to use the (crude) en-method to locate transition. This method has 
been effective at subsonic speeds in "wind-tunnel" as well as flight tests including three- 
dimensional boundary layers (see, e.g., [2]). In this method the transition location is 
fixed when the disturbance amplitude ratio A = Q/Q0 attains the value e n (Q0 is the distur- 
bance amplitude at the lower branch of the neutral stability curve, Q is the current value 
of the amplitude, and n is specified) which is the amplification ratio in the unstable region. 
The transition Reynolds number determined in such a manner is an integral characteristic 
of the boundary-layer instability. It can be used to lucidly compare the contrfbutions 
made by the first and the second modes to the growth of unstable disturbances in the boundary 
layer and investigate the influence of various factors on both the modes~ A comparison 
of stability characteristics (growth rate, neutral curves, and transition Reynolds number) 
of the first and the second disturbance modes is the primary objective of the present paper. 

i. The basis for this study is the program to compute disturbance amplification rate 
~i in the boundary layer with heat transfer [3]. A detailed description of the computational 
technique to determine the stability characteristics is given in [i, 4]. 

Consider a compressible, heat conducting, two-dimensional boundary layer (see, e.g., 
[5] for the system of equations). Computationals are carried out for air flow on an im- 
permeable surface with a specified wall temperature. Almost all computations are carried 
out for zero pressure gradient flow past a cone. The only exception was the study of the 
influence of pressure gradient on the amplification ratio. 

The system of equations describing the flow in the boundary layer was transformed to a 
system of ordinary differential equations (for the flow with a pressure gradient local 
similarity was assumed [5]) which was then numerically integrated (see [i] for details). 
Numerical integration was used to determine the streamwise velocity and temperature distri- 
butions, their derivatives and the variation of viscosity across the boundary layer. These 
were required for the solution of the stability equations. In order to determine the 
amplification ratio the Dunn-Lin [6] approximation was used for the system of stability equa- 
tions with boundary conditions: streamwise and normal velocity as well as temperature 
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